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Abstract 
 
Suppose that the prediction y from a model m is determined by a vector of input variables x. The 
input variables might define initial conditions of a system being modeled as well as parameter 
values in the rules determining y from the initial conditions. We associate the term input 
uncertainty with a lack of knowledge about appropriate precise input values from which to 
calculate y. Therefore, we treat x as a random variable with a probability density function that 
quantifies input uncertainty. The prediction distribution is the corresponding probability 
distribution induced on y by way of the model m, and characterizes prediction uncertainty. The 
objective of our analysis is to investigate the relationship between the input variables x and the 
prediction distribution. In particular, we try to identify small important subsets x’ of inputs that 
“drive” prediction uncertainty. 

Two common approaches used for investigation are differential sensitivity analysis and methods 
based on (linear) regression and correlation coefficients. Generally, these approaches are only valid 
in the neighborhood of a “nominal value” or they require that y be approximately linear in x. 
Furthermore, validity of associated importance measures usually requires that the components of x 
be statistically independent.  

Variance-based methodology is so called because of the prominent role played by the variance of 
the prediction distribution. When the methodology does not depend on the functional form of m, as 
in our case, it is said to be nonparametric. Our aim is to find a subset x’ of the input vector x that 
accounts for a significant part of the variance of the prediction distribution.  

The prediction variance can be written V(y) = V(y’) + E(L) where y’ is a function of only the subset 
x’ and E(L) = E(y-y’)2 is the average or expected squared difference between the full model 
predictor y(x) and a restricted predictor y’(x’). If, on average, y’ is close to y then E(L) will be small 
and we would say that the subset x’ is important because it drives the prediction variance. With the 
correlation ratio, η2 = V(y’)/V(y), as a measure of importance, we now have the problem of how to 
find the subsets. 

Selection of an important subset x’ has two aspects: the size of the subset and its composition. The 
problem for us is similar to the variable subset selection problem in regression. Therefore, we 
proceed in that direction and use an Analysis of Variance (ANOVA) decomposition of variance. 
However, our decomposition is not based on the usual linear model and does not require statistical 
independence of the components of x. The correlation ratio and the ANOVA multiple correlation 
coefficient R2 emerge as natural measures of importance. It should be realized that (1) the number 
of possibilities for subsets of input variables might be astronomical, and (2) suitable estimation of 
variance components might require a large number of computer runs.  


